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Abstract

In assessing the reliability of a binary-state system whose AN
components fail randomly and independently, it is often of Efg:
interest to compute the probability that two terminals or nodes s :%E&
and t are connected and, more generally, the probability that all ﬁTEg

n nodes of a system are connected. In the case of multi-state

flow systems whose components have randomly determined capacity

B

flow levels, interest often focuses on the distribution of

maximal flow from a source node s to a terminal node t. Both the b

binary-state connectivity model and the multi-state flow model S

can be used to represent communication and transportation

networks. N

Since computing these probabilities belongs to the class of

#P-hard problems, no algorithms are known to solve them exactly

in time polynomial in the input. As an alternative method of solu-

tion, Monte Carlo sampling plans are being developed to estimate -

these quantities, especially for large systems. This method has

the advantage that errors in evaluation are essentially indepen- zf?i
NN
dent of the size of the system. This paper describes how these c?&g
b
Monte Carlo sampling plans are designed to use prior information :?
*
o)

on the system under study to obtain estimates with specified accu-

..A
racy at considerably less cost than crude Monte Carlo sampling }{
would require, Such plans are called variance reducing techni- ;i'

rle,
ques and represent an integral component of the Monte Carlo ”.

4 -

method. Also, this prior information about system design enables

one to estimate, prior to performing any sampling, the maximal ot

sample size required to achieve a specified accuracy when using I

the varlance reducing techniques. These worst case bounds on S

sample size are especially helpful when a limited computing

budget is available. s
PR

The paper also describes how Monte Carlo sampling data i:
accumulated to estimate the aforementioned reliability and flow j:

o,

I

probabilities can be used to perform sensitivity analyses with
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only incidental additional cost. These analyses include estimat-
ing the effect of improving component reliability in the binary-
state case and the effect of increasing the probability that a
component operates at full capacity in the multi-state flow case.

Virtually all computations of system reliabllity measures
assume that component reliability probabilities, which are the
input to the computation, are known with certainty. This is
rarely the case and the errors that do exist in these input data
directly affect the quality of the reliability computation,
whether it be an exact or a Monte Carlo based calculation. This
issue is discussed in detail. In particular, the paper describes
the error-induced bias and variance as functions of the
parameters of the system under study and shows how these measures
can adversely affect the interpretation of a reliability

calculation.

Key Words: maximal flow; Monte Carlo sampling; reliability;
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Introduction

--The computation of system reliability from component reliabji-
lities presents a host of non-trivial problems for systems of
varying sizes. These include the functional relationship between
the time required to compute system reliability and system size.
A second problem concerns how system reliability varies as
component reliabilities vary. A third problem concerns how
statistical errors in estimating component reliabilities affect
the accuracy of the system reliability computation.

This paper describes Monte Carlo techniques which provide
useful answers to the first two problems and presents an analysis
which establishes the potential seriousness of the third problem
in practice. The presentation summarizes research reported in
(3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. To put the results in
perspective, we begin with a description of the system

reliability concepts that are of interest to us.

1. Characterizations of System Reliability

Consider the network G = (V,E) with node set V and arc set E.
For convenience of exposition, assume that nodes represent com-
ponents that function perfectly and that arcs represent com-
ponents that fail randomly and independently. To characterize G

more completely, we define:

r = number of distinct types of components
Fj(t) = probability that a component of type i functions
at time 120 for i=1,...,r,.
E(r) = (F1(1),...,Fr(1))

E. =~ set of arcs that use components of type i

(E;nEy=0 i=j E=U E)

ky = |§i| number of components of type i
k = (k ..,kr)

- 1°°

=~ jth arc in Ei

iJ
: = 1 i . i - i
i j if arc elj functions, 0 otherwise
ki
X, = ) Xiy " number of arcs of type i that function

I=1

~
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‘ X = (x 11,...,x1k XogseoenXo SeeeiX yyeeernX | )
h 1 2 r
v X = set of all arc states x
)
B r i ki-xi
N P(x,k,F(1)) = @ [F, C . ° [1-F . (1)] xeX (1
.\' . -~ ~ i - 1 . -~ .
Y, .
= probability mass function of states in X at time 1
;{ p(x) = 1 if the system functions, = 0 otherwise (2)
I g
g(F(1)) = J ¢(x) P(x,k, F(T)) = probability that the system
4' - xeX -
§
n.
- functions at time t. (3)
a
Y
o The interpretation of the system reliability g(F(t)) varies
’. ~
I with the type of system under study. For a binary-state system
< with binary-state components, we consider the T-connectedness
2 problem. Let T denote a subset of V and let
W, - -
t
'n
W ¢(x) = 1 if all nodes in T are connected when state x occurs
- = 0 otherwise.
¢
4
: Then
Cal
= g(F(1)) = probability that all nodes in T are (4)
- connected at time <.
-
¥
k: When T = {s,t} cV, this is called the s-t connectedness problem.
y When T = V, it is called the all-terminal connectedness problem.
o These representations are useful in studying the vulnerabjlity of
»
;g communication systems.
\ One can also use the network representation to study the
. . . . .
* reliability of multi-state systems with binary-state components.
Suppose G is a directed acyclic flow network with source node s
:; and terminal node t and that at time 1t each component of type i
-
>y has flow capacities zero with probability 1-Fi(r) and bi>o with
4 probabjility Fi(r). Let
-
s
-
"
v
l"
~
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g(F(r)) at all ter = {11,...,1 takes 0(k) times as long as com-

}
puting S(F(T)) at a single poiﬁt
To overcome this limitation to exact computation, one can
resort to a Monte Carlo sampling experiment wherein one
approximates g(F{(t)) by an estimate whose error of approximation
decreases as tLe number of independent trials, on which the
estimate is based, increases. Many alternative sampling plans
exist and, in principle, one prefers a plan that exploits prior
knowledge about the system of interest to achieve an error of
specified size at less cost than alternative methods allow.

We now describe such a sampling plan that applies with small
modifications to the estimation of diverse reliability measures
such as (4), (5), (6), (7) and (8), when they are appropriate. For
conciseness of exposition, we assume that estimation is to be
performed for fixed F(r) and k and hereafter suppress these argu-

ments unless they are needed to avoid ambiguity. Reference [4)]
provides a comparison of some of the Monte Carlo techniques to be
described here with the proposed Monte Carlo sampling plans of

other writers.

3. Using Prior Information

Assume that sufficient prior information exists about
the system under study to enable one to identify two binary

functions {¢1(x) xsl} and {¢2(x) xe{} with the property
¢1(x) S ¢(x) s ¢2(x) (9)
where ¢(x) is defined in (2). Let

g8, = ) ¢, (x) P(x)

xel
so that
g, S g s g,- (10)
New let
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¢2(§) - ¢1(§)

Q(x) = P(x) xeX, (1)
~ g, = 8, ~ ~ )

whiech is a probability mass function. Suppose that one can
compute g4 and gp exactly and at reasonable cost as a function of
the size of G. Then the ordering relationships (9) and (10)
together with the probability mass function {Q(x) xs&} in (V1)

allow one to benefit from two alternative modes of sampling.

3.1 Importance Sampling [3,6,7,8,10]
Here one concentrates sampling in the region of the state

space X {xe£|¢1(x)-0 and ¢2(x)=1} as follows:

12
1. Set S«0.
2. On each of K independent trials:
2a. Sample x from {Q(x) xeX}.
2b. Compute o¢(x).
2c. Set S«S+¢(x).
3. Compute summary statistics
3a. gKQ- g, * (zg-g1ZS/K.
3b. V(gK) = (gz-gK)(gK-g1)/(K-j).

Here éK is an unbiased estimator of g with

var éK - (g,-8)(g-g,)/K (12)

and V(éK) is an unbiased estimator of var éK.
One way to assess the benefit of this sampling plan is to
compare it with the results for a crude Monte Carlo sampling

estimate EK of g, using {P(x)}. This too is unbiased but with
var éK = g(1~-g)/K. (13)

The ratio of variances is then

.- "~ - R I e \ .. L Ba— L S N I L I R P S L O UL P P I
l , I / , .' e - » { 3 ‘O P - ~l ‘ ',q b = .- - .l » - . il f .V .h‘ -q J: - - -~ . > P . ’. . - " - - J‘ » -
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Since the lower bound (14) is computable prior to sampling, one
can obtain a clear understanding of the least favorable result
that the sampling plan can induce before employing it.
The variance ratio merely measures one aspect of the impor-
tance sampling plan. Let ¢(P) and c(Q) denote the mean times per
..

replication of employing sampling plans based on {P(x)} in (1)

v
.

and {Q(x)} in (11) respectively. Note that each of these includes

PRI
h
e,

the cost of computing ¢(x). Then

e T R

~

Ta

denotes the mean time required to achieve the same variance with e
crude Monte Carlo sampling as one obtains in one unit of time o)
with the importance sampling plan. For importance sampling to be ;;
beneficial, one requires Wy>1, preferably considerably greater i?
than 1. Reference [3] describes how to construct {Q(x)} and how to b;
sample from it for T-connectivity, and [10] d;scribes the 3;
corresponding construction for the reliability measure g(F(1),2z) Ef
in (5). In both cases, the ability to determine sets Bf edge- gf

disjoint minimal spanning trees and minimal cutsets enables one

to identify the binary functions {¢1(x)} and ¢2(x)} needed to -

'-\ A
achieve the variance reduction. References [3] amd [10] also 3
describe how to compute confidence intervals for g that hold for -
finite K. These considerably improve on normal confidence N
intervals whose use inevitably introduces an additional error of (\:
'
approximation. “:
Y
’\
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a
-
N
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v
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3.2 Control Variates [9]
This plan uses inequalities (9) and (10), but samples the
state vector x from {P(x)} in (1) instead of from {Q(x)} in (11).

-~

In particular:

1. Set S+«0, S1+«0 and So,+0.
2. On each of K trials:
2a. Sample x from {P(x)}.
2b. Compute ¢1(x). o(x) and ¢2(x).
2c. Set S1+S1+¢1(§), S+S+¢(§) and SZ+S2+¢2(§).

3. Compute summary statistic

- - - - { - -
S(g2 81)+(S/K g2)(s1 Kg1)+(g1 S/K)\S2 ng) g,
(K+1)(82'81) -1 :

g * (15)

The resulting statistic is an unbiased estimator of g with

lim K var g, = (8,-8)(g-8,)/(g,-8,). (16)

Ko

An unbiased estimator of var 8y is also given in [10].

Observe that for large K

var 8¢ = var éK/(82-81) > var éK' (17)

Although sampling from {Q(x)} for éK consumes more time than samp-
ling from {P(f)} for gy does, experience has shown that importance
sampling tends to be more statistically efficient than the method
of control variates is for reliability estimation at a single
point. However, in the network flow model the control variate
approach produces sample data that allow estimation at more than
one flow point z whereas importance sampling does not. In parti-
cular, [10] shows how this can be done in estimating the comple-
mentary distribution of maximal s-t flow {g(F(r),z)} at a set of
points zeZ. Confidence intervals for {g(F(r;,z) ZEZ} are also

given there.

it i i e
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4, Determining the Worst Case Sample Size

In addition to producing a statistically more efficient
estimator than crude Monte Carlo sampling does, an effective
Monte Carlo technique also provides information that enables one
to determine how large a sample size is necessary to achieve an
estimate with a specified upper bound on statistical error. Both
the importance sampling and control variate approaches provide
such a result based on a worst case scenario.

Let X1,...,XK denote i.i.d. random variables with y = EXi and
pr(asXjsb) = 1 for all i=1,...,K. Then for A % (u-a)/(b-a) and
e<min{(x,1-X), Hoeffding (1963) shows that

pr(iK-uZe) < RK(x,e/(b-a))
and
- K .
pr(-XK+uze/(b-a)) S R (1-x,e/(b-aj))

where

A )A*G ( 1= )1-X'O

R(}\’e) = (A+e ‘|-A-e

0<e<min(Ax,1=-1), 0sAs1.

Note that R has a unique minimum for A in [0,1-¢/(b=-a)].

Suppose that one wants to determine the minimal sample size
*

K™ such that
pro|X -ulse) 21 - @ (18)
for sampling absolute accuracy € and confidence level 1 - a, Then

collecting

*
K = 1ln(a/2)/max 1n R(A,e/(b-a)) (19)
O0sast
observations assures the absolute error bounds in (18).
Now suppose that uy>0 and consider the relative error

criterion

e w e s

. v e R LI
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pr(|fK*-u|Seu) 2 1 - a. (20,

Then K* is again computable as in (19) with eu replacing € so that

*
K = ln(as2)/min{ max 1n R(A, ( +A)e). max 1ln R(1-), (

0sast 0sas

+X)e)]. (21)

For the reliability problem using importance sampling with
Xk = 8k, @ = g1 and b = g, the significance of (19) and (21) lies
in the realization that one can simply take these numbers of
observations and be guaranteed the corresponding specified
accuracy without any subsequent analysis after computation of éK'

A worst case analysis also exists for the control variate

sampling plan. Let

-he (1-x)h -Xh
r(i,e,h,g,.8,) = e {1 8,48, +(g,-g ) [1e +(1-1)e 11
(22)
8'81
A 2 —, h20 0<eg min(Xx,1=-1).
€784
To ensure an absolute accuracy € with probability 2 1 - a, one

needs no more than

*
K' = 1n(a/2)/min{ max [1n min R(A,h,g,,8,)], max [1n min R(1-),h g1,32)]} (23)
0sAs1 h20 0SAS1 h20

observations. In spite of its formidable appearance, one can

evaluate (23) using a modification of algorithm A in [9].

5. Sensitivity [12]

In addition to estimating the reliability g(F(1)) at a fixed
time 1, the Monte Carlo method provides a way, ag small marginal
cost, of estimating the more general reliability function
{8(9) 9=(q1,...,qr)eﬂ} where q, = probability that a component of
type i functions i=1,...,r and W is a set of component reliability
vectors of interest. Here q; for component i may be a function of
time (i.e. qj=Fj (1)) or it may reflect potential component relia-

bility improvements the effect of which on system reliability is

J‘J‘I. -’J'"I‘-“-nc’-f‘fal’
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“
:: of interest.
¢ With this change of nomenclature, one has
' r X k,-x
P(x,k,q) = N q ‘(1-q) ' ! (24)
g ol =1
k: and
> glq) = ¥ ¢(x) P(x,k,q) qeW. (25)
"o - xeX -~ -~ - -
& -
A Suppose that one elects to perform K independent replications
N with component reliability p using {Q(x,k,p)} (importance sampl-
?i ing). Let x(J) denote the sample component state vector on repli-~
R cation j. The estimators
. K P(x(J),k,q)
B B (0 = 8,(@) + [g,(p)-g, (I T oxV)) —5 (26)
® - - - j=1 ° P(x k,p)
‘
ﬂ
~ and
‘. X px) 1k q)
7 8o () = 8,(2) - [8,(p)=g, (P IK '  0- -ox ) — (27)
2, - - - j=1 P(x 7 k,p)
v - o~
p are unbiased estimators of g(q) with
A:
:.: - * *
. Kv,(q) = K var 8, Q) = {c[gz(p)-g1(p)][g(q )-g,(q )J-[g(q)-81(q)][gz(q)'81(q)l}
. + [g,(a)-8(a) Jeg(a)-g; ()] (28)
h‘ ~ - ~ -~
- . X
. Kv,(q) = K var 8k (1) = {c[zz(g)-g1(g)][82(g )-8(q )]-[82(3)—8(3)][32(@-81(g)]}
n + [g,(q)-g(q) Ilg(q)-g,(a)] (29)
- Ke (gq) = K covlg , .
% 123 LS 82K(q)] (e, (a)-g(a)le(q)-g,(a)] (30)
-"
\
\
W
»
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) where

K.
c = n [q /p +(1—q ) /(1-p )1 4,
i=1

* (* *)
q - q1i°'°'qr

and

* 2/ i =1
q; = a;/cp; i=1,...,r.

In principle, (26) and (27) enable one to estimate g(g) for
all qeW from the single set of replications obtained by sampling
with component reliabilities p. Since [gz(q)-g(q)][s(q)-gW(q)]

in (28) and (29) is the variance of the point estimator éK(q)

————

based on sampling with component reliabilities q, the quantities
in curly brackets are the incremental changes~in variances that
result from sampling with p instead of q. Of most importance, it
is entirely possible for~one of these-quantities to be negative,
implying that an estimate of g(g) with smaller variance than éK(g)
is possible.

To put this last observation in perspective, consider the

estimator -

gK(g) = og1K(g) + (1-0)32K(3) 0gost. (31)

which achieves minimal variance by choosing

0 =1 if v, (q)Sc (q)

12
v,o(a)-cy,(a) ’
v1(3).v2(3)2012(3) (32)

V1(ﬂ)*V2(ﬂ)‘2C12(q)

-~

3 tp W e

- 0 vz(g)$c12(g).
Observe that v1(q)Sc12(q) implies that §1K(q) in (26) has smaller
variance than éK(q) in (12) whereas vz(q)5012(q) implies that

82K(q) in (27) has smaller variance than éK(q) in (12).

Y L, RS S L A S u S e T e AT R T A T T
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Experience with this method of estimation indicates that for
moderately high component reliabilities v2(3)5c12(g) is often
satisfied with substantial reductions in variance at each q in W,
as compared to the results from importance sampling at a ﬁ%int in

Section 3.1. Moreover, all these estimates follow from just one

sampling experiment at p. The development of a confidence region
for the reliabilty function {g(q) qs!} is now underway, as is a
study to determine the optimal p at which to sample from the com-

ponent state space _X_.

6. Errors in Input Parameters [11]

Regardless of whether an exaét or Monte Carlo method is used
in computing system reliability g(q), it is customary to assume

that the numerical values of the component reliabilities

q = (q,.--

-~

show that

.,qr) are exact. In reality they are not, and, as we now
ignoring this potential source of error can give a

misleading interpretation to the final numerical value computed

for g(q).

S;ppose one tests n; components of type i for i=1,...,r.
Each test begins with a new component functioning. 'Let Zij
denote the outcome of the jth test of component of type i where

= 1 if the component functions at the end of the test period

Zij

and Zij = 0 if the component fails prior to the end of the test

period. Presumably each component is tested under

Then

of type i

identical conditions that resemble the system environment.

one has the data vectors Zi = {211,...,2 } for i=1,...,r where

in,
i
the elements of Zi are independent and identically distributed
with qi = E:Zij J=1,...,ni and §1”"'§r are independent. Also,
~ ~1 ni
q. = n, 17z, (33)

i i ij

j=1

is the maximum likelihood estimator of qj with
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a; = Eaqy
var q; = qi(1-qi)/K
B(ai-qi)k = 0(1/niL(k§1)/2J ) k>2 as n, o,

Let q = (&1,...,ar). Then it is not unusual to compute
system reliability as g(a) with no mention of the sampling error

that replacing q by a induces. Unfortunately, the results in
Fishman (1987) show that

Eg(q) - g(q) ~ w(k,q,n) as min n +e (34)
~ - - 18isr
and
var g(a) ~ vik,q,n) as min n e (35)
= - T - 18isr
where

n = (n1....,nr),

2
r k, (k,-1)q;-2x,(k,-1)q, +x,(x.-1) q,(1-q.)
wik,q,n) = 3 { J o()P(x,k,q)[—t—4 1 1 411 g4 A

(36)
- .~ - -~ o~ 2, 2
fel fez q1(1 qi) 2ni
and
( ) E (3 a0x)p( ) [xi'kiqi 2 9;(1-9;)
v(ik,q,n) = $(x)P(x,k,q = .
S TS M q; (1-q,) ny (37)

Expressions (34) and (35) imply that even in the case of an exact
computation (no Monte Carlo sampling), a substantial degree of
statistical error can arise., Clearly g(a) is biased. Moreover,

this bias (36) and the variance (37)~grow quadratically with
Ky,+.+..,kp the number of components of each type used in the

system and linearly with the number r of different types of
components.

----------
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Y

Of special interest is the observation that if all

| N

components of type i are in series and ai replaces ¢gj in the

reliability computation, then the resulting reljiability

7,558

overstates the true reliabjility. Conversely, an understatement

L

of reliability occurs when all components of type i are in

. parallel.
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Since computing these probabilities belongs to the class of z
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time polynomial in the input. As an alternative method of solu-

o
tion, Monte Carlo sampling plans are being developed to estimate i}‘
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Monte Carlo sampling plans are designed to use prior information »
on the system under study to obtain estimates with specified accu- S
racy at considerably less cost than crude Monte Carlo sampling ;“
would require. Such plans are called variance reducing techniques Y
and represent an integral component of the Monte Carlo method. B
Also, this prior information about system design enables one to yf
estimate, prior to performing any sampling, the maximal sample e
size required to achieve a specified accuracy when using the -
variance reducing techniques. These worst case bounds on sample (ﬁ;
size are especially helpful when a limited computing budget is L
available. "]
~
The paper also describes how Monte Carlo sampling data accumu- s
lated to estimate the aforementioned reliability and flow probabi- -y
lities can be used to perform sensitivity analyses with only inci- :f
dental additional cost. These analyses include estimating the }?~
effect of improving component reliability in the binarystate case .3‘
and the effect of increasing the probability that a component :;
operates at full capacity in the multi-state flow case,. :
~
Virtually all computations of system reliability measures ;:‘
assume that ccmponent reliability probabilities, which are the .ﬁ
input to the computation, are known with certainty. This 1is ?V
rarely the case and the errors that do exist in these input data 5:
directly affect the quality of the reliability computation, -®
whether it be an exact or a Monte Carlo based calculation. This i
issue is discussed in detail. In particular, the paper describes }f
“he error-induced bias and variance as functions of the parameters ;x
tne system under study and shows how these measures can adver- ;ﬁ
2ly affect the interpretation of a reliability calculation. ﬁ:
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